Value Proposition of Solar Photovoltaics and Fuel Cells in California

National Congress of American Indians 65th Annual Convention Phoenix, Arizona October 21, 2008

Lori Smith Schell, Ph.D.

Renewable Portfolio Standards and State Renewable Goals

Samson and Goliath Proved that Bigger is *Not* Always Better

- Central Station Generation
 - Big, bigger, biggest
 - Located far from electricity consumers
 - Requires long-distance transmission lines and local distribution networks
- Distributed Generation ("DG")
 - Small, smaller, smallest
 - Typically located on the electricity consumer's property "behind the meter"
 - Grid-connected (electric company still plays a role)
 - Off-grid or islanded (all electricity self-generated)
 - Avoids transmission and distribution & related losses

RPS: Solar and DG Set-Asides Ensure Participation

DG: Distributed Generation * It is unclear at this point if solar water heating is eligible for OH's solar carve-out.

Source: www.dsireusa.org

Traditional Economic Analysis Limits Value Proposition

- Only benefits and costs with transparent "\$" and "¢" market prices are included
- Externalities (+/-), by definition not reflected in market prices, may be significant, but are essentially ignored
 - Quantification difficult and contentious
- Intuitively valuable attributes of DG implicitly valued at zero
 - Health benefits associated with reduced emissions
 - Ability to add capacity in small chunks to meet incremental load

PLEASE Matrix: Valuable DG Attributes Often Not Quantified

POLITICAL	LOCATIONAL	ENVIRONMENTAL	ANTIDOTAL Hedge against:	SECURITY	EFFICIENCY (Market, Technical)
Impact on local control of resources	Impact on local tax base	"Renewable energy credits" and "green certificates" impact	Fossil fuel price volatility	Impact on likelihood of system outages	Impact of combined chilling, heating & power ("CCHP")
Impact on "political capital"	Land use impact (e.g., T&D rights of way)	Impact on NOx and SOx emissions levels	Future electricity price volatility	Impact on supply diversity	Impact on competition & market power mitigation
Impact on achieving RPS goals	Impact on local property values	Impact on PM10 emissions level	Utility power outages	Impact on power quality	Impact on project carrying costs
	Noise level impact	Impact on CO2 emissions level	Utility load forecast uncertainty	Impact on utility grid VAR support	Impact on decision making time required
	Impact on NIMBY and BANANA attitudes	Impact on other emissions levels (e.g., VOCs, mercury)	Uncertain reserve % requirements	Impact on likelihood & severity of terrorist attacks	Impact on project installation time (due to modularity)
	Impact on local economic activity (e.g., job creation)	Impact on material input (e.g., solar panels replace some roofing)	Wheeling costs	Impact on domestic fossil fuel use	Impact on supply options (as DG markets & technologies mature)
	Ability to impact urban load pockets	Healthcare cost impact related to emissions level changes	Future changes in environmental regulations	Impact on fossil fuel import reliance	Impact on load growth responsiveness (due to modularity)
	Ability to impact suburban load pockets	Visibility impact due to emissions impact	Site remediation costs (current and future)		Impact on permitting time and cost
	Ability to impact rural or remote loads	Impact on consumptive water use			Impact on operating life of grid components
	Impact of DG fuel delivery system	Impact on urban "heat islands" (e.g., shading ability)			Impact on resale or salvage value of equipment
	Visual impact	Impact on water & soil pollution levels			

Unique Attributes = Technology-Specific Value Proposition

- Solar Photovoltaics ("PV") Distributed on-peak power, no fossil fuel, no emissions, no noise, modular; weather-dependent, visual impact
- Fuel Cells High electrical efficiency, 24/7 distributed power, cogeneration potential, low noise, modular; fossil or renewable fuel
- Wind Farms Significant but remote intermittent power, requires transmission capacity, no fossil fuel, no emissions; visual and avian impact
- Hydro Pumped storage enables price arbitrage, no fossil fuel; precipitation dependent, fish impact

Solar PV: Value Proposition Varies Across the Country

Technology-Specific Contribution to CAISO On-Peak Capacity: 2006

Figure 1-5: SGIP Project Impacts on 2006 System Peak Technology

Source: Itron, CPUC Self-Generation Incentive Program Sixth Year Impact Evaluation Draft Report, July 31, 2007.

Comparison of Solar PV and Fuel Cell Characteristics

	Solar PV	Fuel Cells	
Capacity	3 kW+	300 kW+	
Availability 20%; Peakir		91%; Baseload	
Fuel	Sunlight	Natural Gas; Renewable Fuel	
Cogeneration?	No	Yes	
Avoided Generator	NGCC; NG Peaking Plant	NGCC; Coal- Fired Plant	

Solar PV and Fuel Cells in California: Avoided Costs

- Solar PV and Fuel Cell Power Generation Avoid:
 - On-Peak Central Plant Generation
 - Capacity Costs
 - Operating & Maintenance Costs
 - Fuel Costs
 - Related Emissions
 - On-Peak Transmission and Distribution
 - Related Losses
- Avoided Emissions
 - Value Depends on Location of Avoided Generator
 - Allowances Not (Widely) Traded Lack Market Transparency
- Value of Health Benefits
 - Limited to Avoided In-State Emissions

Renewable Energy – Protection From Volatile Fossil Fuel Prices

Fuel Cells in California: Additional Value Components

- Additional Fuel Cell Attributes:
 - Natural Gas Savings (& Related Emissions) due to:
 - Higher Fuel Cell Electrical Efficiency vs. Avoided Generator
 - Avoided Boiler Input due to Cogeneration
 - Avoided Flared Gas Emissions due to Use of Digester Gas
 - Increased Power Quality
- Fuel Cells and Solar PV Share:
 - Increased Reliability & Blackout Avoidance
 - Value Increases as Market Penetration of DG Increases
 - Job Creation Potential
 - Initially Installation Labor Only
 - Potential for Additional In-State Manufacturing Capacity

Fuel Cell & Solar PV Value Proposition In California (1 of 4)

^{*} Includes Cogen Credit (60%)

GENERATION-RELATED VALUE (¢/kWh):

3.6 - 11.1

5.5 - 20.0

Solar PV

Fuel Cells

A Includes Digester Gas Credit (30%)

Fuel Cells | Solar PV

Fuel Cell & Solar PV Value Proposition In California (2 of 4)

GRID-RELATED VALUE (¢/kWh):

0.4 - 2.5

0.8 - 5.8

^{*} Includes Cogen Credit (60%)

[^] Includes Digester Gas Credit (30%)

Fuel Cell & Solar PV Value Proposition In California (3 of 4)

n				
		Value of Health Benefits*^	2.34 – 2.54	1.94 – 2.12
ı	٧	alue of Avoided CO ₂ Emissions*	0.11 – 2.21	0.40 – 1.83
Value of Other Avoided Emissions (NOx*^, S02*, VOC*, PM10^, CO*^, Hg)			0.09 – 1.90	0.06 – 1.31

* Includes Cogen Credit (60%)

^ Includes Digester Gas Credit (30%)

EMISSIONS-RELATED VALUE (¢/kWh):

2.5 - 6.6

Fuel Cells

Solar PV

2.4 - 5.3

Fuel Cell & Solar PV Value Proposition In California (4 of 4)

* Includes Cogen Credit (60%)

A Includes Digester Gas Credit (30%)

JOB CREATION VALUE (¢/kWh):

0.1 - 0.3

0.1 - 0.4

RANGE OF TOTAL VALUE (¢/kWh):

6.6 - 20.5

8.8 - 31.5

[^] Includes Digester Gas Credit (30%)

24/7 Fuel Cell Operations = Greater Avoided Emissions than PV & Wind

Fuel Cell @ 91% Capacity Factor; 30% Renewable Fuel; 60% Cogen.

Wind @ 25% Capacity Factor. Solar PV @ 20% Capacity Factor.

Complementary Technologies: The Best of Both Worlds

- Fuel Cells + PV = Baseload + Peak-Shaving
 - Maximizes the most valuable attributes of each DG technology
- Fuel Cells + Wind = Intermittent wind power could be used to produce "green" hydrogen
 - To fuel the California Hydrogen Highway
 - To fuel distributed hydrogen-based fuel cells
 - To avoid need for transmission lines to bring remotely located wind power to lead centers.