Technical and Cost Impacts of Integrating Renewables: A Case Study for California

Lori Smith Schell, Ph.D., Empowered Energy
Joshua D. Eichman, UC-Irvine
Fabian Mueller, Ph.D., UC-Irvine
30th Annual USAEE/IAEE North American Conference
Washington, D.C.
October 2011

Motivation

- California has the most aggressive Renewable Portfolio Standard ("RPS") in the United States
- Legislative mandate for 20% retail sales by 2010
 - California Senate Bill 107, 9/26/2006
 - Actually achieved 15-16% by 2010
- Targeted 33% by 2020
 - Executive Order S-14-08, 11/17/2008
- Legislative mandate for 33% retail sales by 2020
 - California Senate Bill X1 2, 4/12/2011

"With the amount of renewable resources coming on-line, and prices dropping, I think 40 percent, at reasonable cost, is well within our grasp in the near future."

California Governor Edmund G. Brown, Jr.

Operational Reality

- Electrical grid must continually be balanced
 - A variety of generating resources are required
 - Each generating resource has a preferred duty cycle

-Baseload -Load-following -Peaking -Intermittent

New Challenges to Balancing the Grid

 Intermittent renewable resources present new challenges to maintaining a balanced grid.

 As renewables penetration levels increase what is the best way to balance the grid?

More Renewables, More Challenges

Increasing Renewable Penetration Level

0%

Minimal Effects

Cost and Performance

20%

Generation Portfolio and Management

Cost and Performance

Portfolio, Management, Operation and Integration

Performance, Cost, Economic Life, Role of Complementary Technologies

STREAM: Integrated Model Flowchart

STREAM Model: Cost Module

STREAM Model: Preliminary Results

Higher Capacity, Lower Capacity Factors

Lower Capacity Factors, Higher LCOE

Preliminary Generation Portfolio LCOE

More Renewables, More Challenges

33%

Increasing Renewable Penetration Level

50%

0%

20%

100%

Minimal Effects

Cost and Performance

Generation Portfolio and Management

Cost and Performance

Portfolio, Management, Operation and Integration

Performance, Cost, Economic Life, Role of Complementary Technologies

Need for Complementary Technologies

- Preliminary findings demonstrate increased role of complementary technologies as renewable penetration levels increase
- Complementary Technologies initially considered in STREAM model will include:
 - Demand Response ("DR") Measures
 - Peak Shaving
 - Load Shifting
 - Energy Storage
 - Pumped Hydro
 - Compressed Air Energy Storage
 - Flow Batteries

Demand Response Services

What grid-related services can DR provide?

Evaluation Metrics

- Response ude
- Susta period nse period
 - Rese _____n: ~ 15-30 min
 - Peak up to 6 hrs
 - Er hrs to days
- Ra Recovery
- Rec behavior avior
 - Oceant Ampact
- Occupant impact

Energy Storage Services

- Benefit: Shifts energy from high-demand to lowdemand periods
- Cost: Round-trip efficiency penalty may be high

STREAM Model: Energy Storage Module

- Energy Storage
 - Operational parameter inputs:
 - Efficiency
 - Ramp Rate
 - Power Capacity
 - Energy Capacity
 - Must calculate cost uniquely for input parameters

Conclusions

- A model to explore various renewable penetrations for California has been developed and verified
- Importance of renewables integration and management increases with renewables penetration level
- Complementary technologies are required for high renewable penetration levels
- Continued research needed
 - Running various renewable penetration scenarios
 - Enabling renewable cost minimization
 - Exploring the resulting portfolio generation and cost vectors

Future Plans

- Impose an explicit renewable curtailment penalty
 - Capacity factor penalty implicit in current model
- Include electric vehicles for energy storage
 - Value ability to control timing of charging
- Include hydrogen production for energy storage
 - Grid-driven
 - Produce as much hydrogen as warranted by grid benefits
 - Possible driver for hydrogen fuel cell vehicles
 - Demand-driven
 - As hydrogen fuel cell vehicle fleet size increases