The Importance of Being Earnest (or How to Inform the Policy Debate)

ICEPAG 2011 February 8, 2011 Costa Mesa, California

Lori Smith Schell, Ph.D.

Why Bother Being Part of the Policy Debate?

- If you're not there to represent your interests, who is? Likely, your competition!
 - More opportunities than resources to pursue them
- Policymaking is largely an educational process
 - Myriad of interests seeking influence
 - Workload dictates limited attention span
- Ratepayer interests must be protected
 - "Ratepayer Indifference"
 - Policymaker's equivalent of "Do No Harm"

February 8, 2011

www.EmpoweredEnergy.com

Making Your "PITCH" Rules to Live By

- Be Prepared:
 - Many Competing Interests
 - Limited Attention Span
- Be Informative:
 - Data ≠ Information
 - Repetition ≠ Persuasion
- Be Transparent: Minimize Head Scratching
- Be Consistent: Stay on Message
- Be Honest: Avoid False Representations

February 8, 2011

www.EmpoweredEnergy.com

- P: MPR Natural Gas Combined Cycle Costs
 - Know component costs driving policy decisions
- I: Cost of Generation Integrating Renewables
 - Extend existing policy making capabilities
- T: CHP FIT MPR Components + Market Price
 - Eye-catching visual as a leave-behind
- C: SB 32 Renewable FIT TBD (Above-MPR)
 - Build on something familiar
- H: AB 32 2006 Global Warming Solutions Act

Not all results will support your position

February 8, 2011

ww.EmpoweredEnergy.com

.

1. Be Prepared

February 8, 2011

www.EmpoweredEnergy.com

O

- P: MPR Natural Gas Combined Cycle Costs
 - Know component costs driving policy decisions
- I: Cost of Generation Integrating Renewables
 - · Extend existing policy making capabilities
- T: CHP FIT MPR Components + Market Price
 - · Eye-catching visual as a leave-behind
- C: SB 32 Renewable FIT TBD (Above-MPR)
 - Build on something familiar
- H: AB 32 2006 Global Warming Solutions Act
 - Not all results will support your position

February 8, 2011

www.EmpoweredEnergy.com

7

Market Price Referent ("MPR"): Tool of RPS Implementation

- Renewables Portfolio Standard ("RPS")
 - Mandated 20% by 2010 (Senate Bill ("SB")107, 9/26/2006)
 - Targeted 33% by 2020 (Executive Order S-14-08, 11/17/2008)
- Auction held twice per year
 - Significant investment in bid preparation
 - No guarantee of success
 - Limits participation by smaller developers
- MPR sets threshold price for renewable energy contracts
 - All-in costs of representative natural gas combined cycle proxy plant
 - NPV of contract price vs. MPR over contract term
 - Long-term RPS contracts ≤ MPR deemed reasonable
 Authorized in utility rates
 - RPS obligations limited by available funding for > MPR costs

February 8, 2011

www.EmpoweredEnergy.com

- P: MPR Natural Gas Combined Cycle Costs
 - Know component costs driving policy decisions
- I: Cost of Generation Integrating Renewables
 - Extend existing policy making capabilities
- T: CHP FIT MPR Components + Market Price
 - · Eye-catching visual as a leave-behind
- C: SB 32 Renewable FIT TBD (Above-MPR)
 - Build on something familiar
- H: AB 32 2006 Global Warming Solutions Act
 - Not all results will support your position

February 8, 201

www.EmpoweredEnergy.com

15

Cost of Generation: Adding Dynamics to a Static Model

- California Energy Commission ("CEC") Cost of Generation Model
 - Calculates Levelized Cost Of Electricity ("LCOE") for many different generating technologies
- Renewable Energy Secure Communities ("RESCO") project
 - Converts CEC's Excel-based model to MATLAB code
 - Significant analytical enhancements
 - Engineering
 - Economics
 - Designed to assess impacts of integrating renewables

February 8, 2011

www.EmpoweredEnergy.com

3. Be Transparent

February 8, 2011

www.EmpoweredEnergy.com

19

Select Developments in California's Policy Debate

- P: MPR Natural Gas Combined Cycle Costs
- Know component costs driving policy decisions
- I: Cost of Generation Integrating Renewables
 - Extend existing policy making capabilities
- T: CHP FIT MPR Components + Market Price
 - Eye-catching visual as a leave-behind
- C: SB 32 Renewable FIT TBD (Above-MPR)
 - Build on something familiar
- H: AB 32 2006 Global Warming Solutions Act
 - · Not all results will support your position

February 8, 2011

www.EmpoweredEnergy.com

AB 1613: Combined Heat and Power ("CHP") Feed-In Tariff

- CHP Sized for Thermal Load, Exporting ≤ 20 MW
 - (1) MPR Fixed Cost (based on 10-year contract)
 - GHG Compliance Costs to be Paid by Purchaser
 - (2) Monthly Natural Gas Index Price plus Cost of Local Distribution
 - Keeps most volatile component of MPR "fresh"
 - Allows for efficient natural gas price hedging
 - (3) MPR Variable O&M Cost
 - Sum of (1)-(3) Multiplied by Applicable TOD Factor
 - 10% Location Bonus Possible
 - CHP in areas with Local Resource Adequacy requirements (defined, transmission-constrained local areas)

February 8, 2011 www.EmpoweredEnergy.com 22

CHP FIT: Illustrative Calculation for JAN 2011 Contract Date

2009 MPR Fixed Component: \$0.02230/kWh

JAN 2011 NYMEX Settlement: \$4.216/MMBtu

Basis to CA Border: (\$0.22/MMBtu)

Local Distribution: \$0.35/MMBtu

NG Component (\$/MMBtu): \$4.216/MMBtu - \$0.22/MMBtu + \$0.35/MMBty = **\$4.786/MMBtu**

NG Component (\$/kWh): \$4.786/MMBtu x 6,924 Btu/kWh x 0.000001 MMBtu/Btu = **\$0.03314/kWh**

2009 MPR Variable Component: \$0.00451/kWh

Operation Year	Inputs from 2008 MPR	\$/kwh
	Fixed component	0.02186
2009	Variable O&M Adder	0.00443
	Fixed component	0.02230
2010	Variable O&M Adder	0.00451
	Fixed component	0.02274
2011	Variable O&M Adder	0.00459
	Fixed component	0.02319
2012	Variable O&M Adder	0.00466
	Fixed component	0.02365
2013	Variable O&M Adder	0.00474
	- nont	0.02367
		0.00483

CHP FIT = $\frac{0.02230}{kWh} + \frac{0.03314}{kWh} + \frac{0.00451}{kWh} = \frac{0.060}{kWh}$

* Prior to TOD Factor and Locational Adder

February 8, 2011

www.EmpoweredEnergy.com

23

4. Be Consistent

February 8, 2011

www.EmpoweredEnergy.com

- P: MPR Natural Gas Combined Cycle Costs
 - Know component costs driving policy decisions
- I: Cost of Generation Integrating Renewables
 - Extend existing policy making capabilities
- T: CHP FIT MPR Components + Market Price
 - · Eye-catching visual as a leave-behind
- C: SB 32 Renewable FIT TBD (Above-MPR)
 - Build on something familiar
- H: AB 32 2006 Global Warming Solutions Act
 - Not all results will support your position

February 8, 2011

www.EmpoweredEnergy.com

25

SB 32 Renewable FIT Design: New MPR Applications

- SB 32: Renewable FIT
 - For eligible renewable generation ≤ 3 MW
 - Eases difficulties of bidding into RPS solicitations
 - All-In MPR + Value for Other Attributes:
 - Environmental benefits
 - Includes current and anticipated environmental compliance costs
 - Peak demand & congestion reduction benefits
 - Expedited interconnection if peak demand is offset
 - Additional value may be established if peak demand is offset
 - Avoided transmission & distribution improvements
 - Adjusted for TOD
 - Specific pricing formula not yet determined

February 8, 2011

www.EmpoweredEnergy.com

- P: MPR Natural Gas Combined Cycle Costs
 - Know component costs driving policy decisions
- I: Cost of Generation Integrating Renewables
 - Extend existing policy making capabilities
- T: CHP FIT MPR Components + Market Price
 - · Eye-catching visual as a leave-behind
- C: SB 32 Renewable FIT TBD (Above-MPR)
 - Build on something familiar
- H: AB 32 2006 Global Warming Solutions Act
 - Not all results will support your position

February 8, 201

www.EmpoweredEnergy.com

20

AB 32: Putting a Price on Carbon

- Assembly Bill 32 ("AB 32") California Global Warming Solutions Act of 2006
 - Legislative mandate to reduce greenhouse gas ("GHG") emissions to 1990 levels by 2020
 - Survived 2010 ballot initiative for (in effect) indefinite postponement
 - California Air Resources Board ("CARB") to implement cap-and-trade program on 1/1/2012
- How to measure net GHG reductions?
- How to value cost of net GHG reductions?

February 8, 2011

www.EmpoweredEnergy.com

A New Interpretation of **Cost-Effectiveness**

- Lesson learned: Clarify definitions at the outset!
- ARB cost-effectiveness focuses specifically on program cost per unit of avoided emissions
 - Traditional cost-effectiveness = Cost of emissions. reduction measure / quantity of avoided emissions
 - Head-to-head technology comparison expanded application of cost-effectiveness concept
 - Allows for relative savings for avoided emissions

February 8, 2011

www.EmpoweredEnergy.com

Adding CHP/CCHP Increases Fuel Cell Avoided Emissions and Value

Step 1: Value Incremental CO₂ Emissions at \$35/ton of CO₂; Apply to Technology **Cost Difference** 1A. Fuel Cells without CHP/CCHP

Incremental CO2 Market Cost/(Value) (\$/MWh)	vs. Simple Turbine (\$/MWh)	vs. NGCC (\$/MWh)	vs. Microturbine (\$/MWh)		vs. Diesel Engine (\$/MWh)	
PAFC	(0.35)	2.63		10.26		(9.28)
MCFC	(3.33)	(0.35)		7.29		(12.25)
MCFC/T	(9.89)	(6.92)		0.72		(18.82)
PEMFC	(1.55)	1.43		9.06		(10.47)

1B. Fuel Cells with	CHP/CCHP	
Incremental		
CO2 Market		

Incremental CO2 Market Cost/(Value) (\$/MWh)	vs. Simple Turbine	vs. NGCC	vs. Microturbine	vs. Diesel Engine
PAFC	(8.41)	(5.44)	2.20	(17.34)
MCFC	(8.53)	(5.55)	2.08	(17.45)
MCFC/T	(9.89)	(6.92)	0.72	(18.82)
PEMFC	(1.55)	1.43	9.06	(10.47)

February 8, 2011

www.EmpoweredEnergy.com

Fuel Cells + CHP/CCHP Competes **Head-to-Head with NGCC** Step 2: Calculate Cost-Effectiveness of Fuel Cell Emissions Reductions 2A. Fuel Cells without CHP/CCHP CO/NOx/VOC Cost-Effectiveness (NPV\$/ton) vs. Simple Turbine vs. Diesel Engine PAFC (216,327) No Emissions Reduction (25,630) MCFC (217, 375)288.793 No Emissions Reduction (26, 104)MCFC/T (184,049)40,5 No Emissions Reduction (28, 292)(19,296) PEMFC (29,933)No Emissions Reduction 2B. Fuel Cells with CHP/CCHP CO/NOx/VOC Cost-Effectiveness (NPV\$/ton) vs. Simple Turbine vs. NGCC vs. Microturbine vs. Diesel Engine PAFC (129,769) (11,030) No Emissions Reduction (29,386) MCFC (146, 249)10,056 No Emissions Reduction (28,560)(29,569) 6,101 No Emissions Reduction MCFC/T (204,509)PEMFC 44,413 No Emissions Reduction (72,011)(24,115)February 8, 2011 www.EmpoweredEnergy.com

Participate & Make An Effective P-I-T-C-H

- You can't win if you don't play
- Likelihood of success increases if you are:
 - Prepared
 - Informative
 - Transparent
 - Consistent
 - Honest
- There's strength in numbers
 - Collaborate with like-minded parties

February 8, 2011

www.EmpoweredEnergy.com

Conclusion: Steps to Inform Policy Debate & Implementation

Identify Technology-Specific Attributes

Quantify Technology-Specific Value Proposition

Rank Power Generation Technologies by Value Proposition and Suitability for Achieving Policy Goals

Contribute to the Efficient Achievement of Policy Goals at Minimum Cost

Enable Evolution of Next Generation Products:

- (i) Flexible Fuel Hybrid Distributed Generation
- (ii) Natural Gas- & Coal-Fired Hybrid Central Plant Generation.

February 8, 2011

www.EmpoweredEnergy.com