POWER-TO-GAS: Enabling Rapid Response, Variable-Duration Energy Storage at Grid Scale

ICEPAG 2017 28 March 2017 University of California - Irvine

Lori Smith Schell, Ph.D., ERP Empowered Energy

174 N. Elk Run, Durango, CO 81303 USA Tel: (970) 247-8181 • Fax: (970) 247-3761 E-Mail: LSchell@EmpoweredEnergy.com

Increased Renewables Are Impacting Electric Grid Flows...

Source: CallSO

As Well As Wholesale **Electricity Pricing...**

CAISO: Frequency of Negative 5-Minute Prices, By Month

Source: www.caiso.com/market/Pages/MarketMonitoring/MarketIssuesPerfomanceReports/Default.aspx (Third Quarter 2016)

HiGRID Results: Renewables Integration

- Task 4.1: Perform spanning analysis for different resources in California
 - Installation of renewables affects how other generators operate

Electrolysis Using Renewables Helps Balance Grid Operations

- Produced Hydrogen: Multiple Potential Uses
 - Power-to-Gas
 - Direct Injection into Natural Gas Pipeline System
 - Feedstock for Methanation of H2 to CH4
 - Dispensed Fuel for Fuel Cell Vehicles
 - Power-to-Gas-to-Electricity
 - Fuel Cell Feedstock for Electricity Generation
- "Battery" Aspect of Hydrogen Use Cases
- How Do Economics of Hydrogen Use Cases Compare to Traditional Batteries?

Multiple Technology Mixes Make for Multiple Use Cases

- Electrolyzers: Highly flexible, fast on and off
 - PEMEC, AEC, SOEC
- Fuel Cells
 - PEM, Alkaline, SOFC, MCFC
- Hydrogen Fuel Dispensing
 - Central Production: Gaseous, Liquid
 - Onsite Production: Gaseous
- Batteries
 - Li-Ion, ZnBr (Flow), NaS, Advanced Lead-Acid

Technologies Are Developing Rapidly; Costs Are Declining

- CASE 1: Current Costs
 - 50% Annual Average Capacity Factor ("CF") for All Use Cases to Level the Playing Field
- CASE 2: Current Costs
 - 90% CF for Electrolysis-Based Use Cases
 - 45% CF for Battery Use Cases
- CASE 3: Future Costs
 - 90% CF for Electrolysis-Based Use Cases
 - 45% CF for Battery Use Cases

Levelized Cost of Returned Energy ("LCORE") Concept

- Use Case Electricity Input Assumptions:
 - If not input to electrolyzers or batteries, the renewable-based electricity would otherwise be curtailed
 - Electricity input cost is thus assumed to be ZERO
- LCORE represents the levelized cost of all equipment required to generate the final product for each Use Case
 - Is the same as the Levelized Cost of Electricity but with all input fuel costs set to zero.

LCORE Results

CURRENT COSTS & EFFICIENCES

50% Capacity Factor for All Equipment

Natural Gas Pipelines and Storage Facilities

LCORE Results

CURRENT COSTS & EFFICIENCES

45% Capacity Factor for Batteries; 90% Capacity Factor for All Other Equipment

Natural Gas Pipelines and Storage Facilities

LCORE Results

LCORE Results

CURRENT COSTS & EFFICIENCES

45% Capacity Factor for Batteries; 90% Capacity Factor for All Other Equipment

FUTURE COSTS & EFFICIENCES

45% Capacity Factor for Batteries; 90% Capacity Factor for All Other Equipment

Natural Gas Pipelines and Storage Facilities

LCORE Results 5.PAFC **FUTURE COSTS & EFFICIENCES** 57 7.PEMEC 45% CF for Batteries; 56 90% CF for All Other Equipment Alluvial Diagram: Different 4.MCFC Presentation, Same Results 6.AEC 3.eGrid Pathways compared here: AEC + SOFC 3.PEMFC Electrolyzer + Fuel Cell = Electricity to Electric Grid **Battery Range** Electrolyzer + H2 = H2 to Natural Gas Grid 42 2 SOFC 5.SOEC Electrolyzer + Methanator = Natural Gas to Natural Gas 37 Grid 4 NaS 1.None Battery Energy Storage = 3.Lead Acid 2.H2 2.NG Tran Electricity to Electric Grid 2.Li-ion 1.CH4 1.NG Dist 1.ZnBr © National Fuel Cell Research Center 2016 Technology FC.Type Energy Form Destination

LCORE Results by Use Case: Comparative Economics

- At Current Costs + 50% CF:
 - H2 production for direct fueling quite competitive
 - Batteries more competitive for electricity delivery
- At Current Costs + 90% vs. 45% CF:
 - H2 fuel into legacy central station generation competitive with batteries for electricity delivery
- At Future Costs + 90% vs. 45% CF:
 - H2 & CH4 for pipeline injection competitive
 - H2 for fuel cell electricity generation competitive.

POWER-TO-GAS: LCORE Analysis Conclusions

- Power-to-Gas Can Provide Economic Grid-Scale Storage of Hydrogen Using Otherwise-Curtailed Renewable Generation
- Power-to-Gas Increases Grid and Fuel Flexibility Through Multiple Use Cases
- Current Economics Support Hydrogen Generation for Fueling
- Future Economics Support Hydrogen Use in Fuel Cells for Electricity Generation.

POWER-TO-GAS: Enabling Rapid Response, Variable-Duration Energy Storage at Grid Scale

THANK YOU! QUESTIONS?

Lori Smith Schell, Ph.D., ERP Empowered Energy

174 N. Elk Run, Durango, CO 81303 USA Tel: (970) 247-8181 • Fax: (970) 247-3761 E-Mail: LSchell@EmpoweredEnergy.com

