CALIFORNIA LESSONS: The CSI's Foundational Role in Microgrid Development

ICEPAG 2018
29 March 2018
University of California - Irvine

Lori Smith Schell, Ph.D., ERP Empowered Energy

174 N. Elk Run, Durango, CO 81303 (970) 247-8181 LSchell@EmpoweredEnergy.com

California and Germany: Policy vs. Resource Strength

Explicit PV Value Proposition Supported Ratepayer Funding

		EXMOR LSS-/
Build-Up of PV Value		¢/kWh
Service Macroscopes USE	Other Values (See Write-up)	TBD
In California	Value of Health Benefits* Value of Avoided NO _x Emissions*	0.02 - 0.04 0.01 - 0.03
V	Value of Avoided CO ₂ Emissions*	0.33 - 1.77 0.01 - 0.05
Americans for Solar Power Value	e of Fossil Fuel Price Hedge	0.41 - 0.95
Value of Deplo	Grid Support* byment Ease and Speed ition and T&D Losses*	0.09 - 0.28 Site Specific 0.52 - 1.36
Avoided Generatio	n Fuel Cost (Natural Gas)	3.24 - 9.71
Avoided Generation Variable Operation & Maintenance Cost*		0.00 - 0.08
Avoided Distribution Cost* (All Costs Allocated to Summer Peak)		0.19 - 2.95
Avoided Transmission Cost* (All Costs Allocated to Summer Peak)		0.04 - 0.72
Avoided Generation Capacity Fixed Operation & Maintenance Cost*		0.19 - 0.44
Avoided Generation Capacity Capital Cos		2.73 - 4.01
(65% Effective Load Carrying Capacity applied to a	all Avoided Capacity Costs)	
PANGE	OF TOTAL VALUE OF PV: 75	8 - 22 1 d/k/Mh

RANGE OF TOTAL VALUE OF PV:

7.8 - 22.4 ¢/kWh

Exhibit LSS-7

California Solar Initiative ("CSI"): Basic Parameters

- \$3.3 Billion in Ratepayer-Funded Incentives
 - 10-Year (2007-2016), Solar PV and Thermal, Multiple Programs
- Major Goals:
 - 3,000 MW total installed capacity; maximum on-peak performance, preceded by energy efficiency measures
 - Solar energy systems on 50% of new homes in 13 years
 - Self-sufficient solar industry; viable mainstream option
- Incentives for 1 kW-5 MW systems; paid only up to 1 MW.
 - Performance-Based Incentives; paid over 5 years (50+ kW)
 - Expected Performance-Based Incentives; paid up-front (<50 kW; capacity-based)
 - Incentives decline at least 7% per year; ratcheted down at specific installed capacity level thresholds
- Most CSI programs closed at the end of 2016
- Net metering for solar PV production remains.

CA CSI: Incentives Declined as Installed Capacity Grew

PBI: Performance Based Incentive, paid over 5 years, in \$ / kWh EPBB: Expected Performance Based Buydown, paid upfront, in \$ / W

www.EmpoweredEnergy.com

The CSI General Market Program pays solar PV incentives all at once for smaller systems or over five years for larger systems; \$2.1 billion in total incentives with a 1,750 MW installed PV target.

Expected Performance-Based Buydown (EPBB):

Smaller systems – less than 50 kW, Intended for residential and small business customers
Upfront, capacity-based incentive that is adjusted based on expected

system performance.

Performance-Based Incentive (PBI):

Larger systems – larger than 30 kW (applications between 10 and 30 kW can choose) Intended for large commercial, government, & non-profit customers.

CSI: S-Curve Pattern of Capacity Installations by Year

Source: California Distributed Generation Statistics, https://www.californiadgstats.ca.gov/charts/csi. Projects are bucketed by the First Incentive Claim Request Review Date which is used as the best proxy for an *installed* date in the CSI program. Data current through 2018-02-21.

CSI: Cost per Watt Dropped as Installed Capacity Grew

7

Source: California Distributed Generation Statistics, https://www.californiadgstats.ca.gov/charts/csi. Projects are bucketed by the First Incentive Claim Request Review Date which is used as the best proxy for an *installed* date in the CSI program. 142,464 project(s) were included for the generation of this chart. Data current through 2018-02-21 and are not adjusted for inflation.

German Feed-In Solar Tariff: 52 GW Cap vs. CSI's 3 GW Goal

German Energiewende uses feed-in tariffs, with a 52 GW solar cap.

- Starting PV FIT level > CSI PBI
- Capacity tranches much larger
 - Costs recovered through a RE levy that today makes up almost 24% of total residential electricity rates; 2018 surcharge = €0.06792/kWh
 - Costs socialized across the country vs. being limited to recovery by specific investor-owned utilities (as is done for the CSI).

Source: Jurgen Weiss, The Brattle Group, July 2014, Solar Energy Support in Germany-A Closer Look, p. 10, https://www.seia.org/sites/default/files/resources/1053germany-closer-look.pdf.

Percentage

Source: California Distributed Generation Statistics, https://www.californiadgstats.ca.gov/charts/csi. 143,084 project(s) were included

20

for the generation of this chart. Data current through 2018-02-21; German percentages derived from Fraunhofer ISE, 2018, Recent Facts about Photovoltaics in German, pp.28-29, https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/recent-facts-about-photovoltaics-in-germany.pdf

40

60

Commercial

Government/ Generators

Non-Profit

100

80

California PV Generation is Growing in Absolute Terms...

Solar

Geothermal

Small Hydro

Biogas

Biomass

And as a Percentage of CAISO Net Load (= Load Served).

Actual net-load and 3-hour ramps are approximately four years ahead of ISO's original estimate

Source: CAISO, Mark Rothelder, 5/12/17, Renewable Integration, California Energy Commission, IEPR Workshop, http://www.caiso.com/Documents/RenewableIntegrationUnlockingDividends.pdf.

Low Net Load Affects CAISO Wholesale Electricity Pricing...

Distribution of Negative Prices - March, April & May

And Solar Value Factor as Solar Curtailments Increase.

14

Source: Lawrence Berkeley Lab, September 2017, *Utility-Scale Solar 2016: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States*, p.35,

http://eta-publications.lbl.gov/sites/default/files/utility-scale_solar_2016_report.pdf

VALUE PROPOSITIONS DRIVING MICROGRIDS TODAY

Case Study Value Proposition Rankings – All Regions

Source: Navigant, 10/2/17, California Energy Commission Microgrid Research Roadmap: Global Case Studies & Summary, http://www.caiso.com/Documents/NavigantPresentation-CaliforniaEnergyCommissionMicrogridResearchRoadmap.pdf.

16 / ©2017 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

CA Microgrid Drivers Point to Increased Demand for Storage

3,000

1KW

10KW

1,000

 Best storage type depends on microgrid equipment portfolio.

Grid Energy Storage Technologies and Applications

System Power Rating

10 MW

100MW

1GW

Power vs. Energy

Capital Cost per Unit Power -

300

Capacity vs. Flow

100

Capital Cost per Unit Energy - \$/kWh-output (Cost / capacity / efficiency)

LCORE Results

LCORE Results

CURRENT COSTS & EFFICIENCES

45% Capacity Factor for Batteries; 90% Capacity Factor for All Other Equipment

FUTURE COSTS & EFFICIENCES

45% Capacity Factor for Batteries;

90% Capacity Factor for All Other Equipment

Natural Gas Pipelines and Storage Facilities

17

California CSI: Lessons Relevant for Microgrids

- Almost every microgrid includes solar PV
 - Off-setting technologies required for integration
- Demonstrated value proposition is imperative
 - Homogeneity of solar PV enabled single valuation
 - Heterogeneity of microgrid design requires more project-specific quantification of value
- Cost improvements must be demonstrated as microgrid installed capacity increases
- Carrots create more positivity than sticks.

Disruptive Change is Coming... Faster than We Think

- Decentralized, block chain-enabled, peer-topeer ("P2P"), trustless trading platform
 - Establishes digital trust via bilateral smart contracts

We believe empowering individuals and communities to co-create their energy future will underpin the development of a power system that is resilient, low-cost, zero-carbon and owned by the people of the world.

CALIFORNIA LESSONS: The CSI's Foundational Role in Microgrid Development

THANK YOU! QUESTIONS?

Lori Smith Schell, Ph.D., ERP Empowered Energy

174 N. Elk Run, Durango, CO 81303 (970) 247-8181 LSchell@EmpoweredEnergy.com

HiGRID Results: Renewables Integration

- Task 4.1: Perform spanning analysis for different resources in California
 - Installation of renewables affects how other generators operate

Solar PV Output Depends on Orientation, Tilt, and Tracking

Simulated energy production of one kilowatt of solar PV capacity in Los Angeles, Calif.

Source: EIA, based on National Renewable Energy Laboratory's PVWatts, using default input values except as noted.

Note: Tilted systems are assumed to be mounted with a 20-degree tilt from horizontal. The assumed system size is one kilowatt of direct current, with output in watthours of alternating current.

Renewable portfolio goal

Renewable Portfolio Standard Policies

Includes non-renewable alternative resources

Renewable Portfolio Standards (RPS) with Solar or Distributed Generation Provisions

