
Clearing the Air: Cap-and-Trade vs. Carbon Tax

29th USAEE/IAEE North American Conference Calgary, Alberta 15 October 2010

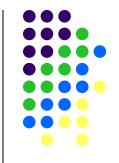
Lori Smith Schell, Ph.D.
President, Empowered Energy
174 N. Elk Run, Durango, CO 81303
(970) 247-8181 fax: (970) 247-3761
LSchell@EmpoweredEnergy.com

Useful Terminology

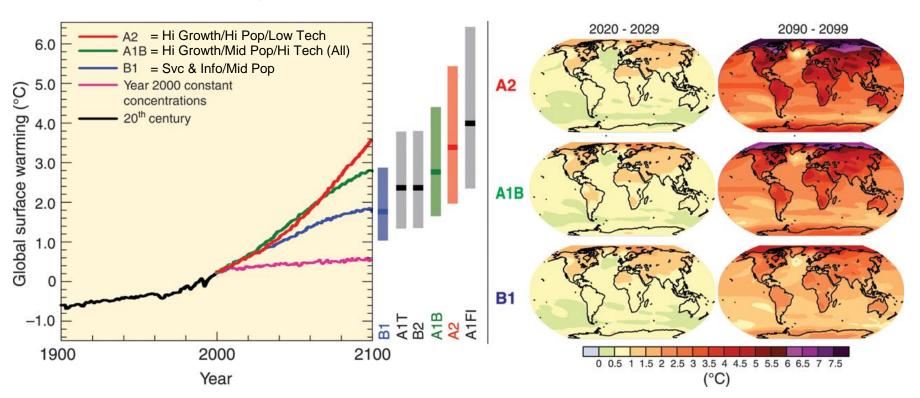
- GHG = Greenhouse Gases
- GWP = Global Warming Potential

GHG	GWP (100 Yr)
 Carbon Dioxide – CO₂ 	1
 Methane – CH₄ 	21
 Nitrous Oxide – N₂O 	310
 SF₆ – Sulfur Hexafluoride 	23,900
 Hydrofluorocarbons (13) – HFCs 	140-11,700
 Perfluorocarbons (6) – PFCs 	6,500-9,200

- CO2e = Carbon dioxide-equivalents
- MT = metric tonne = 2,200 pounds
- MMTCO2e = Million metric tonnes of CO2equivalents

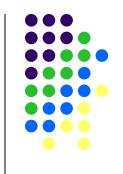

 Source: U.N. Framework Convention on Climate Change website.

Brief History of Global Climate Change Negotiations



- 1989 Intergovernmental Panel on Climate Change ("IPCC")
 - Leading body for assessment of climate change
 - United Nations Environment Programme + World Meteorological Association
- 1992 Rio Earth Summit
 - United Nations Framework Convention on Climate Change ("UCFCCC")
 - Encouraged industrialized nations to stabilize GHG emissions
 - Conference of Parties ("COP") to UCFCCC meets annually
- 1997 Kyoto Protocol adopted
 - Committed 37 industrialized nations + the European community to binding GHG emissions reduction targets
 - Average reduction of 5% vs. 1990 from 2008-2012
 - Ratified by 184 Parties of the UNFCCC, but not the U.S.
- December 2007 COP 13: Bali, Indonesia
 - Bali Roadmap: Complete new climate change negotiating process by 2009
- Negotiating for the Post-Kyoto Protocol world
 - December 2009 COP 15: Copenhagen
 - Bali Roadmap negotiations not completed → COP 16: Cancun (12/10)

Scenarios: IPCC Fourth Assessment Report (2007)



Surface Warming Relative to 1980-1999 (Various Scenarios, 2007 Data):

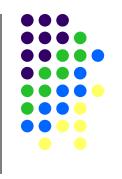
Source: Intergovernmental Panel on Climate Change, Fourth Assessment Report, "Climate Change 2007: Synthesis Report," 2007, Figure 3.2, p. 46.

Premise: U.S. Climate Change Legislation Likely...Someday

- Regulatory need reflects a market failure
 - Failure to monetize the true cost of GHG emissions
- Cap-and-Trade has greatest momentum;
 Carbon Tax proponents playing catch-up
- Type of legislation determines Congressional lead
 - Carbon Tax => Tax Committees
 - House Committee on Ways and Means
 - Senate Committee on Finance

2009 Waxman-Markey Bill: American Clean Energy and Security Act ("ACES")

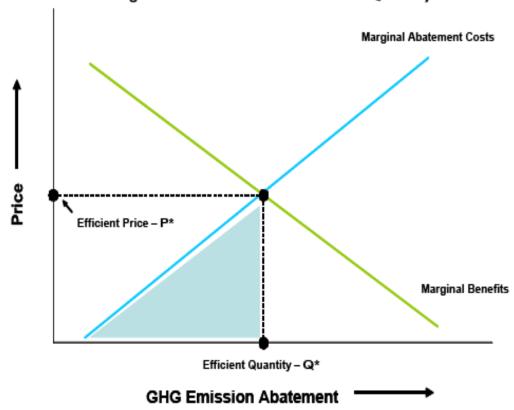
- Cap-and-Trade => Environmental Policy Committees
- House Committee on Energy and Commerce
 - Senate Committee on Environment and Public Works
- Businesses just want certainty



Non-Market-Based Programs for Controlling Emissions

- Command-and-Control Regulations
 - Performance Standards
 - Energy Efficiency Programs
 - Vehicle Emissions Standards
 - Annual Emissions Checks
 - Low Carbon Fuel Requirements
 - Seasonal Oxygenated Fuel Requirements
 - Direct Regulations
 - Codes
 - Standards

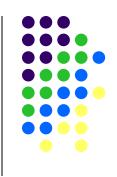
Market-Based Programs for Controlling Emissions



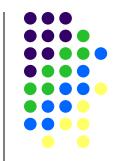
- Carbon Tax: Control PRICE of Emissions
- Cap-and-Trade: Control QUANTITY of Emissions
- Common features:
 - Determine where compliance is measured
 - Determine who must comply (i.e., program participants)
 - Need for measurement, monitoring, reporting, enforcement
 - Penalties high enough to ensure compliance
 - Both will favor lower-carbon fuel input
 - Both will favor lower-carbon content output

In a Perfect World Each Would Achieve the Same Outcome

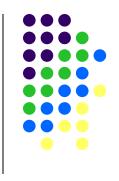
Figure 1. Illustration of Price Versus Quantity


Source: Congressional Research Service, "Carbon Tax and Greenhouse Gas Control: Options and Considerations for Congress," Figure 1, p. 4.

Who Complies? Where?


- Where to measure emissions?
 - Downstream: Output-based (e.g., per ton CO₂ emitted)
 - Carbon emitters pay based on CO₂ emissions
 - Upstream: Input-based (e.g., per MMBtu of fuel input)
 - Carbon suppliers pay based on CO₂ content of fuel provided
 - Significantly fewer direct program participants
 - Direct program participants ≠ GHG emitters
 - Compliance costs impact all carbon-based fuel prices
- Which sectors of the economy must comply?
 - Electricity generators/industrial boilers/fuel suppliers?
 - All facilities in sector?
 - Only those above a specified size or output level?

Fundamentals of a Carbon Tax


- Control PRICE of emissions
- Fix the \$/ton of CO₂ price at the outset
 - How to set initial \$/ton of CO₂ price (i.e., tax rate)?
 - What to do with the resultant tax revenue?
- Once price is set, maximum compliance cost known
 - CO₂ price is known; have price transparency
- Total amount of/reduction in emissions uncertain
- Administratively simpler than cap-and-trade
 - Tax collection systems already in place
- Easy to modify; only have to change \$/ton CO₂ price
- Any tax increase is politically difficult to "sell"

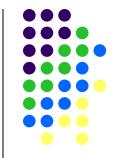
Carbon Tax: As Simple as...

Form GHG Department of the Treasury Internal Revenue Service		Greenhouse Gas (GHG) Tax ► Attach to Form 1120 or Form 1040. ► See instruction			ctions.	OMB No. 2976-0013 2010 Attachment Sequence No. 89		
Name(s)	shown on return						Your EIN or So	cial Security umber
1	(a) Facility I	Name	(b) Facility ID I	No.		(c)	2010 tons (of GHG Emissions
2	Add amounts	s on line 1, column (c)	, and enter the total		2			
3	Enter applica	able GHG tax rate	3		-			
4	Multiply the a	amount on line 2, colu	mn (c), times tax rate on	ine (3)	4			
5			(c), on Form 1120, line 49		. 5			

Fundamentals of Cap-and-Trade: I

- Control QUANTITY of emissions
 - Emissions allowances are the "currency" of cap-and-trade
 - 1 Emissions Allowance = Right to emit 1 ton of CO₂
 - Cap = Limited number of emissions allowances made available each compliance period (e.g., calendar year)
 - New Entrant Reserve sets aside a portion of the total cap for new facilities
 - Each emissions allowance has a vintage year
 - Trading period extends beyond compliance period
- How to set yearly cap?
- How to ratchet cap down over time?
- How to allocate emissions allowances?

Fundamentals of Cap-and-Trade: II

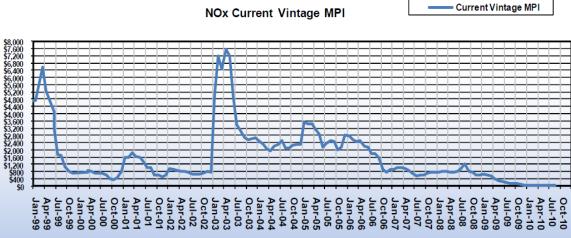

- Capped emissions allowances must be allocated
 - Free allocation based on baseline year emissions
 - Rewards participants with higher emissions in baseline year
 - Free allocation based on a performance benchmark
 - Rewards more efficient participants
 - Additional allowances available through trading or auction
 - 100% sold at auction
 - What to do with auction revenues?
 - Hybrid: Free allocation of some, auction of others
 - Free allocation initially, moving increasingly toward full auction
 - California: Initial free allocation of some emissions allowances to manage "competitiveness and economic transition issues"

Fundamentals of Cap-and-Trade: III

- Easier to "sell" politically because (improperly) is not explicitly identified as a tax
- Administratively more difficult than carbon tax
 - Allowances must be tracked by vintage and owner
 - Trading market requires property right certainty
- More difficult to modify; all allocations have to be reviewed unless changes limited to pro rata
- Resultant price of emissions allowances uncertain
 - Existing cap-and-trade programs have experienced significant price volatility

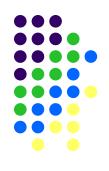
Examples of Cap-and-TradePricing Volatility

European CO₂ Prices (\$/tonne)



Source: CantorCO2e website.

EU ETS - 27 European States


- Phase I 2005-2007
- Phase II 2008-2012
- Phase III 2013-2020

Northeastern U.S. NO_x Prices (\$/ton)

Source: CantorCO2e, "Monthly Market Price Indices," August 2010, p. 3.

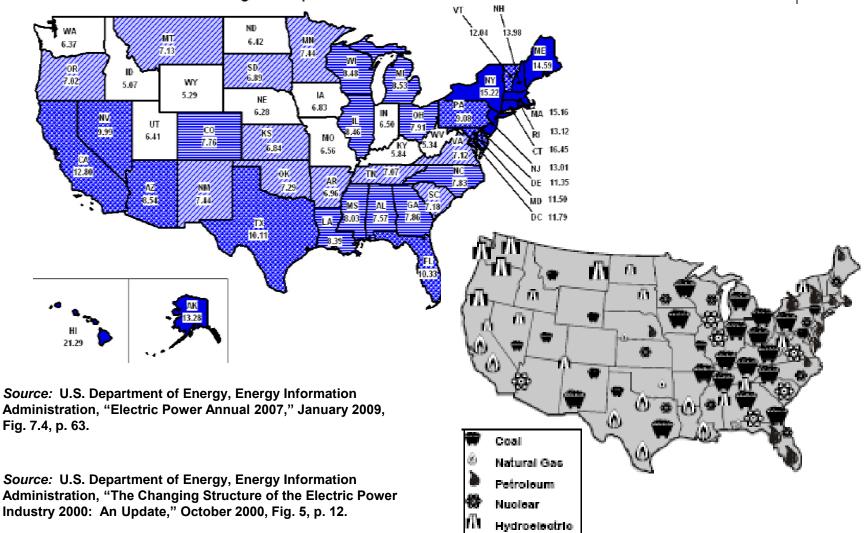
Cap-and-Trade Variations to Reduce Price Volatility

- Banking
 - Encourages early compliance
 - Use banked emissions allowances in later years
- Borrowing
 - Use later vintage allowances for current compliance
- Safety Valve
 - Set a threshold price on emissions allowances
 - Issue additional emissions allowances
 - Suspend compliance requirements
- Offsets
 - Allow out-of-region (or non-participant) emissions reductions to count toward program compliance
 - Limited quantities allowed
 - May be difficult to authenticate actual out-of-region reductions
 - Could also be used with carbon tax

Total Compliance Costs Differ Depending on Program Type

- Carbon tax
 - No ability to trade
 - Everyone in the sector pays the same tax rate
 - Compliance cost differences not exploited
- Trading under cap-and-trade
 - Takes advantage of compliance cost differences to minimize total societal compliance costs
 - Freely allocated allowances create profit potential
 - Fear of Enron-type abuses with trading

Impact of Putting a Price on CO₂



- Automatically calculates "carbon footprint" cost
 - Increases price of high carbon-content products
 - Provides incentive for lower carbon-content products
 - Encourages new carbon-reduction technologies
- Simplified illustration of economic impacts:
 - At \$25/ton CO₂ impact on electricity prices would be:
 - Pulverized Coal Plant: 1 ton of CO₂/MWh x \$25/ton CO₂ = \$25/MWh = 2.5 cents/kWh
 - Natural Gas Combined Cycle Plant: 0.5 ton of CO₂/MWh x \$25/ton CO₂ = \$12.50/MWh = 1.25 cents/kWh
- Differential regional impact
 - Job gains/losses
 - Manufacturing capacity gains/losses

Regional Impacts Will Differ Significantly

Revenue Recycling: Political Dream or Nightmare?

- Promote climate change policy objectives
 - Invest in research & development
 - Stimulate new technologies and greater energy efficiency
- Rebate revenue back to affected consumers
 - Dampens desired consumer behavior modification
 - Difficult to design an equitable rebate
 - Who defines "equitable"?
 - One proposal: Flat per capita dividend
 - Transparent & simple; less subject to manipulation
 - Progressive (poorer consumers ➤ greater "+" impact)
 - Regional redistribution impact raises equity issues
- Reduce the national debt
- [Add your favorite political cause here]

Broader Issues

- International and regional compatibility of different climate change programs
 - Compliance enforcement
 - Changing political regimes
 - Differential program commitment
 - Leakage
 - Less likely the larger the region included in the program
- Equity issues between industrialized and developing countries
 - Fair to limit developing country growth?
 - Emissions tend to increase with economic growth
 - One example: Performance-based cap-and-trade
 - Linked to economic growth
 - Favored by developing countries (e.g., China, India, Brazil)

Cap-and-Trade vs. Carbon Tax: Two Sides of the Same Coin

Carbon Tax: Control Cost of Emissions

Cap-and-Trade: Control Quantity of Emissions