

Maximising the Efficiency of Natural Gas Use: The Case for Solar Water Heating

Lori Smith Schell, Ph.D. Empowered Energy, U.S.A.

www.EmpoweredEnergy.com

Expert Forum A.B: The Post-Kyoto Challenges of the Natural Gas Industry Thursday, 8 October 2009, Buenos Aires, Argentina

The Global Energy Challenge: Reviewing the Strategies for Natural Gas

70 Minutes of Sunlight = 1 year of Global Energy Consumption

Source: United Nations Environment Programme, Solar and Wind Resource Assessment, http://na.unep.net/swera_ims/map/.

What Can SWH Do to Maximise Efficient Use of Natural Gas in California?

- 85% of California's natural gas ("NG") is from out-of-state
 - 22% of California's NG is for residential use
 - ~40% of residential NG use is for water heating
 - · 89% of water heating is natural gas-fired
 - 7% liquefied petroleum gases; 4% electric
 - SWH primarily for swimming pool heating
 - Hot water usage = 41,045 Btu/day = 43,275 kJ/day

Assumptions Used in Quantifying Residential SWH Value in California

- Displaced hot water would be from NG-fired water heaters
- Residential SWH collector in California:
 - 40 square feet ("ft²") = 3.7 square meters ("m²")
 - $1,000 \text{ Btu/ft}^2\text{-day} = 1,054 \text{ kJ/m}^2\text{-day}$
 - 40,000 Btu/day => SWH needs auxiliary NG-fired tank
 - SWH does not completely displace need for NG
 - Yearly hot water from SWH = 146 therms = 15.4 GJ

Greatest Value of SWH = Natural Gas Savings

- Direct:
 - Displacement of NG Otherwise Combusted to Generate Hot Water
 - Value = 29.65-110.62¢/therm SWH
- Indirect:
 - Avoided Efficiency Losses from Displaced NG-Fired Water Heater
 - Value = 10.49-53.90¢/therm SWH
- Solar Energy Factor ("SEF") = Energy Output of SWH System ÷
 (Auxiliary Water Heater Energy Use + SWH System Energy Use)

The Global Energy Challenge: Reviewing the Strategies for Natural Gas

Table 1. Examples of Natural Gas Savings from Residential SWH ^[1]			
	Case 1	Case 2	
Natural Gas-Fired Water Heater Efficiency	0.60	0.67	
Solar Energy Factor	2.00	2.15	
Total Natural Gas Savings (therms/year)	175	154	
Direct Natural Gas Savings (therms/year)	105	103	
Indirect Natural Gas Savings (therms/year)	70	51	
Natural Gas Therms Saved per Therm SWH	1.20	1.05	

The 67% efficiency used in Case 2 became the federal standard in the United States for small natural gas-fired storage-type water heaters effective January 20, 2004.

Natural Gas Hedge Value = 5.27-9.58¢/therm SWH

The Global Energy Challenge: Reviewing the Strategies for Natural Gas

2017 SWH Projections: California Solar Hot Water and Efficiency Act of 2007

- Goal: 200,000 SWH installations x 130 therms/year avoided NG use/SWH installation = 26 million therms/year avoided NG use
 - < 2% of California's residential + commercial SWH "technical potential" (i.e., engineering-based)
- 0.14 million metric tonnes of CO₂-equivalent ("MMtCO2e") emissions avoided per year
- 0.3 tons/day of nitrous oxides ("NO_x") emissions avoided
- 0.03 tons/day of particulate matter <2.5 μ ("PM2.5") emissions avoided

Avoided CO₂ Emissions Are Significant Policy Driver

- California Global Warming Solutions Act of 2006
 - 2020 GHG emissions = 1990 levels = 427 MMtCO2e
 - Reduction of 169 MMtCO2e per year by 2020
- CO₂ emissions rate = 11.7 lb/therm of NG combusted
- 1 therm SWH avoids 1.20-1.05 therms of NG combustion, depending on efficiency (60-67%) of NG-fired water heater
- CO₂ emissions price range: \$8.00-\$27.27/ton CO₂
- Value of Avoided CO₂ Emissions = 4.93-19.10¢/therm SWH

The Global Energy Challenge: Reviewing the Strategies for Natural Gas

Other SWH Avoided Emissions Add Significant Value

	NG-Fired Water Heater Emissions (lb/MMBtu)	Emissions Allowances Price (\$/lb/day)	SWH Value (¢/therm SWH)
NO _x	0.08420 (SHW output)	\$47,000-\$374,384	4.34-34.55
PM2.5	0.00842 (SWH output)	\$120,000-\$410,959	1.10-3.79
SO ₂	0.00059 (NG input)	\$40,275-\$244,751	0.03-0.16

+

Value of Related In-State Health Benefits = 28.25-32.10¢/therm SWH

Value of Avoided Distribution Losses & Fugitive Methane

- Avoided Distribution Losses
 - 1.76% Average Lost and Unaccounted For; wt. avg. for California's 3 investor-owned NG distribution companies
 - Valued at daily NG price range of \$4.20-\$15.40/MMBtu
 - Value = 1.02-2.51¢/therm SWH
- Avoided Fugitive Methane ("CH₄") Emissions
 - CH₄ Global Warming Potential ("GWP") = 21
 - 1.4% systemic NG losses (wellhead to burner tip) x 75-95%
 CH₄ content x 21 x NG price range = 0.54-1.56¢/therm SWH

The Global Energy Challenge: Reviewing the Strategies for Natural Gas

Value of Avoided (or Deferred) NG Pipeline Capacity

- Based on avoided cost analysis for California investorowned utilities used in regulatory proceedings
- 2008 Gas Transportation Avoided Costs discounted by 50% to reflect statistical capacity value of the NG savings attributable to SWH
- Value of residential SWH = 3.12-9.99¢/therm SWH

Value of Job Creation Potential

- Value of 4.75-5.79¢/therm SWH based solely on cost of installing and maintaining medium-temperature SWH systems in California, based on 2020 penetration assumptions
- No increase in manufacturing capacity within California
- 8 million ft² of SWH collector area by 2017 = 200,000 SWH systems x 40 ft² per SWH system
- 32 hours of labor per installation x \$86.77/hour + ongoing annual maintenance @ 1/10th the number of installation hours

The Global Energy Challenge: Reviewing the Strategies for Natural Gas

Additional SWH Attributes Not Yet Quantified

- Value of lower natural gas and electric prices
- Value of reduced reliance on imported natural gas
- Value of increased energy security
- Value of meeting other policy objectives:
 - By 2020, 100% of new homes built in California should achieve a statewide standard of zero net energy ("ZNE")
 No net purchases of energy from the electrical or NG distribution grid

Conclusions

- SWH provides significant value to California in displacing hot water otherwise provided by NG-fired water heaters
- Ratepayer incentives for SWH between 93-284¢/therm SWH would fall within quantified range of value of residential SWH
- Quantification of additional components will increase value of SWH even more...
- Use of SWH can maximise the efficient use of NG not only in California, but around the globe.